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Objectives: The frontal lobe hypothesis of age‐related cognitive decline suggests

that the deterioration of the prefrontal cortical regions that occurs with aging leads

to executive function deficits. Photobiomodulation (PBM) is a newly developed, non-

invasive technique for enhancing brain function, which has shown promising effects

on cognitive function in both animals and humans. This randomized, sham‐

controlled study sought to examine the effects of PBM on the frontal brain function

of older adults.

Methods/designs: Thirty older adults without a neuropsychiatric history performed

cognitive tests of frontal function (ie, the Eriksen flanker and category fluency tests)

before and after a single 7.5‐minute session of real or sham PBM. The PBM device

consisted of three separate light‐emitting diode cluster heads (633 and 870 nm),

which were applied to both sides of the forehead and posterior midline, and delivered

a total energy of 1349 J.

Results: Significant group (experimental, control) × time (pre‐PBM, post‐PBM) inter-

actions were found for the flanker and category fluency test scores. Specifically, only

the older adults who received real PBM exhibited significant improvements in their

action selection, inhibition ability, and mental flexibility after vs before PBM.

Conclusions: Our findings support that PBM may enhance the frontal brain func-

tions of older adults in a safe and cost‐effective manner.
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1 | INTRODUCTION

The frontal lobe hypothesis suggests that the cognitive deficits in

older adults are mainly related to the anatomical and functional dete-

rioration of the prefrontal cortical regions of the brain.1,2 Studies on

the neurobiological changes in older adults have shown that these

individuals exhibit significantly greater reductions in cortical volume,3

greater neuronal atrophy4 and synapse loss,5 and more senile plaques6

in the prefrontal lobe than in other regions of the brain. Consistent

with these structural changes in the prefrontal regions of the brain,

most of the cognitive deficits that are associated with aging are in

executive function (EF), which is mediated by the frontal lobe.7
wileyonlinelibrary.com/j
Specifically, EF refers to a set of administrative and decision‐making

abilities that are important for behavior, namely the planning and initi-

ation of actions, selection of relevant information, inhibition of irrele-

vant information, and flexible thinking. Empirical evidence has shown

that compared with younger adults, older adults perform less well on

some standardized neuropsychological tests of EF, such as the

Wisconsin Card Sorting Test8 and the verbal fluency test.9-11 To iden-

tify the EF deficits in older adults, several experimental computerized

paradigms have been employed, including the divided attention,12

n‐back,13,14 and Eriksen flanker tests.15,16 Prior studies have shown

that deficits in some aspects of EF, especially inhibition and mental

flexibility, can predict subsequent global cognitive decline,17 future
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Key points

1. PBM may enhance frontal brain function in older adults

after a single treatment.

2. Older adults who received sham PBM did not show

executive function improvements.
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falls,18,19 and poor functional status20 in healthy older adults without

dementia. Thus, training procedures or interventions that can effec-

tively improve these frontal functions are clinically important.

Photobiomodulation (PBM) is a newly developed, noninvasive

interventional technique that has been found to exert positive effects

on cognitive function according to both animal21-23 and human24-26

studies. The mechanism of PBM is based on bioenergetics, photo-

chemistry, and photobiology. Specific molecules inside the neurons

absorb the photons and change the rate of metabolic reactions within

the cells, ultimately activating signaling pathways and transcription

factors.27 The primary molecular photoacceptor of red and near‐

infrared light is cytochrome c oxidase, which is a key enzyme in the

mitochondrial respiratory chain.28-31 Photon absorption increases oxy-

gen consumption,32 leading to increased oxidative phosphorylation

and mitochondrial activity.33 In turn, more adenosine triphosphate is

synthesized,32 thus providing extra metabolic energy for neural trans-

duction.34 Cerebral blood flow is increased due to the vasodilation

that occurs after the release of nitric oxide.35 The increased adenosine

triphosphate and cerebral blood flow work together to enhance brain

function.36-38 This mechanism is supported by previously reported

animal experiments, which identified increases in cytochrome c oxi-

dase and metabolic capacity following PBM.37,39,40 Other studies

using various mouse models showed that PBM effectively provided

neuroprotection,41,42 improved memory function,43 and reduced brain

tissue loss.22

The abovementioned neuroenhancement effects of PBM have

also been found in humans.25,26,44-46 Although PBM has been around

since the 1960s47,48 (originally called “low‐level laser therapy”49), it

has only recently been applied in different populations as a neuropsy-

chological intervention for enhancing brain function. For instance,

PBM improved the EF, verbal learning, and memory of patients with

traumatic brain injuries,25 as well as the cognitive and functional

abilities for daily living in patients with mild to moderately‐severe

dementia.26 In addition, the remission of symptoms of patients with

major depression and anxiety was observed following PBM.45,46 Apart

from clinical patient populations, PBM has been applied to healthy

college students, whereby 8 minutes of PBM treatment to the right

prefrontal pole (FP2) successfully improved their memory, sustained

attention, and emotional state.44 Besides, Vargas et al has conducted

a PBM study to 21 elderly with subjective memory complaint and

reported a significant effect on some frontal cognitive function, such

as sustained attention and short‐term memory.50

The major objective of the present study was to examine the

effects of PBM on frontal executive function in older adults. We

hypothesized that PBM would facilitate frontal executive function,

which would be indicated by improved inhibition ability and greater

mental flexibility in older adults. To assess the effects of PBM on

these functions, we employed the Eriksen flanker and category

fluency tests. The Eriksen flanker test51 is widely used to measure

inhibition ability and selective attention. It requires individuals to

judge the direction of a target stimulus, which is surrounded by flanker

stimuli. Consistent with the notion that this test evaluates frontal lobe

function, functional magnetic resonance imaging studies have shown

that the Eriksen flanker test is primarily mediated by the right ventro-

lateral prefrontal cortex, supplementary motor area, and left parietal
cortex.52 Moreover, many research studies have found that older

adults respond slower than do younger adults to the congruent

and incongruent conditions of this test.15,16,53 We also used the

category fluency test, a common test for mental flexibility and

lexical/semantic access, which requires individuals to generate as

many examples of a category (eg, animals) as they can in 1 minute.

Positron emission tomography and functional magnetic resonance

imaging studies have shown that performing this test is primarily

mediated by the left ventrolateral and dorsomedial prefrontal

cortex and the temporal cortex.54 Similar to the findings for the

Eriksen flanker test, research studies using the category fluency test

revealed that older adults have poorer category fluency than do

younger adults.9,11,55
2 | MATERIALS AND METHODS

2.1 | Participants

The study sample consisted of 30 older adults (≥60 years) without

dementia, who were recruited through campus advertisements and

the subject database of the neuropsychology laboratory at the

Department of Psychology of The Chinese University of Hong Kong.

The older adults were initially screened by a research assistant and

excluded if they had a history of traumatic head injury or any neuro-

logical and/or psychiatric disorders. In addition, participants were

excluded from the present study if they exhibited signs of dementia,

as indicated by a total raw score <112 on the Chinese version of the

Dementia Rating Scale (CDRS),56 or a high level of depression, as indi-

cated by a total score >7 on the Chinese version of the Geriatric

Depression Scale (CGDS).57 All participants had normal or corrected‐

to‐normal vision during the experiment. Each older adult was paid

100 HKD for participating in this study. The study was conducted in

accordance with the Helsinki Declaration of the World Medical Asso-

ciation Assembly and approved by the Joint Chinese University of

Hong Kong‐New Territories East Cluster Clinical Research Ethics

Committee. All participants provided written informed consent.
2.2 | Procedure

Participants were assigned randomly to either the experimental group

(n = 15) or the control group (n = 15). Participants in each group com-

pleted neuropsychological assessments and a PBM session. The whole

experimentation was administered by trained research assistants and a

graduate student, who were supervised by a clinical neuropsycholo-

gist. The neuropsychological assessments included the (1) CDRS,56



TABLE 1 Parameters of each LED cluster of the PBM device used in
the present study

Model Model 1100; MedX Health, Toronto

Diameter 5.35 cm

Area 22.48 cm2 ((5.35 cm / 2)2 × π)

Energy density 20 J/cm2

Duration 7.5 min (450 s)

Power density 44.4 mW/cm2 (20 J/cm2 / 450 s)

Total power 999 mW (44.4 mW/cm2 × 22.48 cm2)

Total energy 449.6 J (999 mW × 450 s)
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which estimates the level of global cognitive functioning; (2) CGDS,57

which measures the level of depressive symptoms; (3) Beck Anxiety

Inventory (BAI),58 which measures the level of anxiety symptoms;

and (4) the Hong Kong List Learning Test (HKLLT),59 which is a stan-

dardized verbal list learning test that can be used to measure verbal

memory in local Chinese populations.

The PBM session consisted of the application of PBM using a

painless, noninvasive light‐emitting diode (LED) device (Model 1100;

MedX Health, Toronto) and two computerized assessments evaluating

the effects of PBM. The PBM device contained three LED cluster

heads. Each LED cluster head had the following parameters: diameter,

5.35 cm (9 red diodes [633 nm] and 52 near infrared diodes [870 nm]

were embedded into each LED cluster head); total area, 22.48 cm2;

total power, 999 mW; power density, 44.4 mW/cm2; and continuous

wave. The detailed specification and calculation of parameters is

stated in Table 1. This device was approved by the US Food and

Drug Administration as imposing insignificant risk (Food and Drug

Administration‐cleared for home treatment, 2005). In the present

study, the three LED cluster heads were placed on the participant's

head. According to the International 10‐20 system,60 two cluster

heads were fixed to the left (Fp1) and right (Fp2) frontopolar regions,

while the remaining cluster head was fixed to Pz.

During the PBM administration, participants were instructed to

keep their eyes closed and sit still in an office chair. They were also

asked to wear a pair of eye protection glasses. In the experimental

group, PBM consisting of 20 J/cm2 and a total energy dose of

1349 J was applied simultaneously at each cluster LED head to the

head of the participants by the three LED cluster heads. In the control

group, the PBM device was turned off before the application of light.

We arranged for the device to beep before it was turned off to give

the control participants the impression that the device was operating.

All participants were blinded to their group assignment. None of the

participants reported any adverse side effects. The duration of

the PBM administration was 7.5 minutes.

Before and after PBM, participants performed computerized

assessments of frontal function. The experimental procedure and head

setup are illustrated in Figure 1. The sections below describe the

details of each test.
2.3 | Tests

2.3.1 | Modified Eriksen flanker test

We employed a modified arrow version of the Eriksen flanker test50 to

measure inhibition ability and selective attention. To increase the

degree of conflict induced by flanker stimuli, the task was modified

such that the flanker stimuli (ie, “<< <<” or “>> >>”) were always

presented 200 milliseconds before the central target was observed

(ie, “>” or “<”).61-63 Specifically, each trial began with the presentation

of horizontally oriented flanker stimuli. After 200 milliseconds, the

target stimulus was presented at the center of a computer screen

for 800 milliseconds, and the flankers remained on screen until the tar-

get disappeared. Participants were instructed to judge the direction of

the central target and to respond as quickly as possible by pressing a

button on a computer mouse, with the left direction being assigned
to the left button and the right direction being assigned to the right

button. The direction of the central target was equiprobable. The

flanker and target stimuli were followed by an interstimulus interval

(ISI) of 1000 milliseconds, during which a blank screen was shown.

The flanker task consisted of two conditions: the congruent and

incongruent conditions. The task consisted of 100 trials in total, and

took 3 minutes 20 seconds for each individual to complete. Prior to

the actual experimental session, participants performed a practice ses-

sion to familiarize themselves with the task. The accuracy and mean

RT on correct trials were recorded separately for the congruent and

incongruent conditions.
2.3.2 | Category fluency test

The category fluency test is a widely used frontal lobe test that

requires the controlled retrieval of lexical/semantic information. In

the present study, participants were instructed to generate as many

words belonging to a given category as possible within a time limit

of 1 minute. Participants were also asked to avoid repetitions. Two

categories were employed for word selection: The first category was

“animals,” and the second category was “means of transportation.”64

The total number of animal and transportation words produced was

calculated for each individual.
2.3.3 | Simple RT test

A simple RT test, adapted from previous studies,44 was employed as a

control task for response speed. It consisted of 40 trials in total. On

each trial, a white plus sign (+) was presented for 1000 milliseconds

against a black background at the center of a computer screen. Partic-

ipants were instructed to respond by clicking the left button of a com-

puter mouse as fast as possible upon stimulus presentation. The valid

response period was 1000 milliseconds. The stimulus presentation

was followed by an ISI of 2 to 10 seconds that increased in 2‐second

steps, during which a blank screen was presented. There were eight

trials for each ISI, and the ISI order was pseudorandomized for each

individual. The primary dependent variable was the mean RT.
2.4 | Data analysis

The demographic and clinical characteristics (except for gender)

and neuropsychological test scores were compared between the



FIGURE 1 Experimental setup of the photobiomodulation session. A, Procedures for photobiomodulation. SRT, simple reaction time task; CF
Task, category fluency task. B, Sites of photobiomodulation according to International 10‐20 system60

TABLE 2 Comparisons of the means and standard deviations of the
demographic variables, neuropsychological functioning scores, and
mood state scores between the groups, as conducted using indepen-
dent sample t tests and chi‐squared tests

Group

Control
(N = 15)

Experimental
(N = 15)

M SD M SD t/χ2 P

Demographic variables
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experimental and control groups using independent sample t tests

(two‐tailed). Gender was compared using a chi‐squared test.

Next, participants' scores on the frontal function assessments that

were performed before and after PBM were analyzed. To calculate the

mean RT on the flanker and simple RT tests, incorrect trials and cor-

rect trials with a RT <150 milliseconds or three standard deviations

above the respective group mean were excluded. To check whether

the experimental and control groups differed before PBM, indepen-

dent sample t tests were first performed to compare the pre‐PBM

test scores between the groups. Then, to compare the changes in test

scores from before to after PBM between the two groups, repeated

measures analyses of variance (ANOVAs), with time (pre‐PBM, post‐

PBM) as the within‐subject factor and group (experimental, control)

as the between‐subject factor, were conducted on the dependent var-

iables (eg, mean RT, accuracy). Paired sample t tests (two‐tailed) were

then used to evaluate the changes in test scores from before to after

PBM in the experimental and control groups separately.

All statistical analyses were performed using SPSS 24.0 software

(IBM Corporation, Armonk, NY, USA). Because all statistical tests were

planned, the significance level was set at P < 0.05 for all tests.
Age, years 68.77 4.66 66.29 2.93 −1.74 0.09

Gender (M/F) 1/14 2/13 0.37 0.54

Handedness (L/R) 1/14 1/14 0.00 1.00

Education, years 6.27 3.9 8.17 3 1.50 0.15

Neuropsychological functioning

CDRS (raw score; out of
144)

131.4 8.42 131.2 7.94 −0.07 0.95

HKLLT

Trial 3 recall (raw score; out
of 16)

10.47 2.70 11.13 2.53 0.70 0.49

10‐min delayed recall (raw
score; out of 16)

9.13 3.87 9.73 3.35 0.45 0.65

Mood state

BAI (total score; out of 63) 7.73 10.12 3.4 6.91 −1.37 0.18

CGDS (total score; out of
15)

2.2 2.54 2.4 2.06 0.24 0.82

Trial 3 refers to the last learning trial of the HKLLT. No significant group
differences were found for any of the variables.

Abbreviations: CDRS, Chinese version of the Dementia Rating Scale;
HKLLT, Hong Kong List LearningTest; BAI, Beck Anxiety Inventory; CGDS,
Chinese version of the Geriatric Depression Scale (short form).
3 | RESULTS

3.1 | Demographic characteristics,
neuropsychological functioning, and mood state

The demographics, clinical characteristics, and neuropsychological

assessment scores of the experimental and control groups, as well

as the related statistics, are presented in Table 2. No significant

differences in age, gender, handedness, or years of education were

identified between the groups (Ps > 0.092). Furthermore, no signifi-

cant group differences in the neuropsychological measures, including

the HKLLT trial 3 recall and 10‐minute delayed recall scores and the

total raw score of the CDRS, were observed (Ps > 0.49). No group

differences in the levels of depressive and anxiety symptoms, as indi-

cated by the CGDS and BAI scores, respectively, were identified

(Ps > 0.18).
3.2 | Performance on the modified Eriksen flanker
test

We first analyzed the congruent condition of the flanker test

(Figure 2). No group differences in mean RT (P = 0.59) or accuracy

(P = 0.72) were identified before PBM. Following this, a repeated mea-

sures ANOVA, with time (pre‐PBM, post‐PBM) as the within‐subject

factor and group (experimental, control) as the between‐subject fac-

tor, was performed to compare the changes in mean RT between

the experimental and control groups. Confirming our initial hypothesis,



FIGURE 2 Reaction times of the experimental and control groups for both the congruent and the incongruent conditions of the flanker test.
Paired sample t tests were performed to detect any pre‐to‐post reaction time differences after real or sham photobiomodulation (PBM) in the
experimental and control group, respectively. Repeated measures analyses of variance were performed to investigate the group (experimental,
control) × time (pre‐PBM, post‐PBM) interaction. The error bars represent one standard error

CHAN ET AL. 5
we found a significant group × time interaction ( F [1,28] = 4.72,

P = 0.038). Paired sample t tests showed that only the experimental

group exhibited a significant decrease in the mean RT (t = −2.75,

P = 0.016, d = 0.71). No significant change in the mean RT was iden-

tified in the control group (P = 0.98). Thus, only those participants

who received real PBM responded faster on the congruent condition

of the flanker test. In addition, probably due to a ceiling effect, an

independent sample t test showed no significant group difference in

the pre‐ to post‐PBM changes in accuracy (P > 0.50).

The incongruent condition yielded similar findings (Figure 2). No

group differences in the mean RT (P = 0.18) or accuracy (P = 0.42)

were identified before PBM. Compared with baseline, the mean RT

after PBM was significantly shorter in the experimental group, but

not in the control group. The repeated measures ANOVA showed a

significant group × time interaction ( F [1,28] = 4.48, P = 0.043). Paired

sample t tests showed a marginally significant decrease in the RT after

PBM in the experimental group (t = −2.1, P = 0.050, d = 0.55), but not

in the control group (P = 0.44). Therefore, PBM led to a significant

improvement in inhibitory control. In addition, no significant group

differences were found for the pre‐ to post‐PBM changes in task

accuracy (P > 0.14).

Given that the experimental group showed faster RTs during both

the congruent and incongruent conditions of the modified Eriksen

flanker test, it was necessary to exclude the possibility that this effect

was due to an improvement in response speed, rather than to an

improvement in inhibitory ability. To do this, we analyzed the data

from the simple RT task. The repeated measures ANOVA did not

reveal a significant group × time interaction (P = 0.44). Additionally,

paired sample t tests did not show significant pre‐ to post‐PBM

changes in the mean RT in the experimental (pre‐ vs post‐PBM:

378.39 vs 399.74 ms, P = 0.059) or control groups (pre‐ vs post‐

PBM: 374.89 vs 385.27 ms, P = 0.29). Furthermore, independent sam-

ple t tests did not reveal significant differences in the number of hits

before and after PBM in either group (Ps > 0.16). Hence, the results
of the flanker test were not due to a simple increase in response

speed. In summary, older adults appeared have improved mental

flexibility and inhibition ability after real, but not sham, PBM.
3.3 | Performance on the category fluency test

The category fluency test was employed to test mental flexibility.

Before PBM, no significant group difference in the total number of

unique words produced during the category fluency test was identi-

fied (P = 0.38). A repeated measures ANOVA, with time (pre‐PBM,

post‐PBM) as the within‐subject factor and group (experimental,

control) as the between‐subject factor, was performed. The results

showed a significant group × time interaction ( F [1,28] = 5.43,

P = 0.027). Paired sample t tests revealed a significant increase in

the total number of words produced after PBM in the experimental

group (t = 3.25, P = 0.006, d = 0.84), but not in the control group

(P = 0.89). The effect of PBM on the percentage change in the total

number of unique words produced is shown in Figure 3. In summary,

older adults generated significantly more examples within a category

only after receiving PBM. These findings again suggest that PBM

enhances flexible thinking and facilitates frontal function.
4 | DISCUSSION

The present study examined the effectiveness of a 7.5‐minute session

of PBM to improve frontal function in older adults without dementia.

Our results showed improved action selection and inhibition ability, as

indicated by significant RT decreases on the flanker test, in older

adults who received real vs sham PBM. In addition, the experimental

group, but not the control group, produced significantly more words

on the category fluency test, indicating an improvement in mental

flexibility after PBM. Thus, the present findings suggest that PBM

may enhance frontal function in older adults. The present results are



FIGURE 3 Percentage change in the total
number of unique words generated during the
category fluency test after
photobiomodulation (PBM). An independent
sample t test showed a significantly larger
percentage change in the experimental group
than in the control group (t = 2.28, P = 0.030,
d = 0.83). The error bars represent one
standard error. *P < 0.05
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in line with Vargas et al's findings, in which improvements in sustained

attention and visual working memory of elderly have been reported.50

Our study preliminarily examined the effects of PBM on the

cognitive function of healthy older adults. This is different to the

conventional approach, whereby an intervention is employed to com-

bat the cognitive decline that is associated with aging. Traditionally,

this intervention involves some form of behavioral training. Previous

research studies have reported positive results using behavioral

interventions, with such interventions improving various cognitive

functions in older adults including memory, problem solving, visual

searching, task switching, inhibition, and reasoning.65-68 However,

these training interventions often require multiple sessions to produce

a significant effect and may be less applicable to older adults and

those with limited educational levels. The present findings show that

PBM may be considered as a supplementary or alternative interven-

tion for improving or maintaining cognitive function in older adults.

The relative ease of use and harmless nature of LED devices suggest

that they could function as home use devices for this application. As

studied by Disner et al, there is a significant interaction between

attention bias modification, a cognitive intervention, and PBM.69 With

the use of PBM, the beneficial effect of attention bias modification

may be enhanced. Therefore, there is initial evidence that PBM may

augment with other forms of behavioral intervention, in enhancing

the treatment effects to the elderly.

Among the existing neuromodulation techniques, PBM is a

relatively recent example that is capable of enhancing EF function.

Other neuromodulation techniques, including transcranial direct cur-

rent stimulation and transcranial magnetic stimulation, which utilize

electrical currents and magnetic fields to stimulate the human brain,

respectively,70,71 have a relatively longer history. Transcranial low

intensity–focused ultrasound is another modality that uses physical

energy to stimulate the brain.72 Although previous studies using these

transcranial brain stimulation approaches have also found beneficial

effects on cognitive function in older adults,73-75 the mechanisms

underlying these various manifestations of physical energy are quite

different from those of PBM. While transcranial direct current stimu-

lation and transcranial magnetic stimulation aim to induce very small

electric currents in the cortex that facilitate the depolarization and

hyperpolarization of neurons, PBM utilizes low‐level light to generate
cellular biochemistry and increase blood flow. Thus, further studies

comparing the effects of various neuromodulation techniques to

determine the optimal clinical interventions for improving cognitive

function are required.

Several limitations of this study should be noted. Although

the participants exhibited significant immediate improvements in

inhibitory ability and mental flexibility after a single session of PBM,

further studies are needed to investigate whether repeating PBM at

yet‐to‐be‐determined time intervals can produce long‐lasting effects

on EF. Vargas et al compared the effects of repeating PBM at weekly

intervals in the frontal cognitive function of older adults.50 By applying

a single 8 minutes of PBM intervention, Vargas et al reported

improvement in the number of lapse in the psychomotor vigilance

task. Furthermore, researchers have found greater effects after apply-

ing five 8 minutes of PBM intervention for 5 weeks (ie, one for each

week).50 Therefore, it is plausible that a longer PBM treatment may

produce a long‐lasting and greater treatment effects on EF. Moreover,

the present study evaluated only two components of EF, namely inhi-

bition ability and mental flexibility. Because different aspects of EF

may be mediated by different parts of the frontal lobe (ie, task setting

based in the left hemisphere, and monitoring based in the right hemi-

sphere),76 additional studies that conduct more‐comprehensive

assessments are needed to evaluate the specificity of the effects of

PBM on frontal functions in older adults. Blanco et al has found that

rule‐based learning, but not information‐integration learning, is

improved after PBM.77 This result provides some initial evidences in

the specificity of the effects of PBM and highlights the clinical use

of PBM, since rule‐based category learning is impaired among

elderly.78 Finally, our sample size was relatively small, and most of

the participants were females. Further investigations with larger

sample sizes and more‐balanced gender distributions are required.
5 | CONCLUSION

In conclusion, the present study demonstrated that a single session of

PBM specifically improved certain aspects of frontal function in older

adults without dementia. Because a decline in frontal function may

predict a subsequent decline in general cognitive function and future
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functional deterioration,17-20 PBM may serve as a potential neuropro-

tective agent for maintaining or improving cognitive function in older

adults. Such neuroprotective approaches are becoming essential,

given that the average age of the overall population continues to

increase in recent decades.
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